The profile and boundary layer for parabolic system with critical simultaneous blow-up exponent

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Simultaneous vs. Non-simultaneous Blow-up in Numerical Approximations of a Parabolic System with Nonlinear Boundary Conditions

We study the asymptotic behavior of a semidiscrete numerical approximation for a pair of heat equations ut = ∆u, vt = ∆v in Ω × (0, T ); fully coupled by the boundary conditions ∂u ∂η = up11vp12 , ∂v ∂η = up21vp22 on ∂Ω× (0, T ), where Ω is a bounded smooth domain in Rd. We focus in the existence or not of non-simultaneous blow-up for a semidiscrete approximation (U, V ). We prove that if U blo...

متن کامل

Blow-up at the Boundary for Degenerate Semilinear Parabolic Equations

This paper concerns a superlinear parabolic equation, degenerate in the time derivative. It is shown that the solution may blow up in finite time. Moreover it is proved that for a large class of initial data blow-up occurs at the boundary of the domain when the nonlinearity is no worse than quadratic. Various estimates are obtained which determine the asymptotic behaviour near the blow-up. The ...

متن کامل

Non-simultaneous Blow-up for a Semilinear Parabolic System with Nonlinear Memory

In this note, we study the possibility of non-simultaneous blow-up for positive solutions to the following system,

متن کامل

Non–simultaneous Blow–up for a Semilinear Parabolic System with Localized Reaction Terms

In this paper, we study positive blow-up solutions of the semilinear parabolic system with localized reactions ut = Δu+ vr + up(0,t), vt = Δv + us + vq(0,t) in the ball B = {x ∈ R N : |x| < R} , under the homogeneous Dirichlet boundary condition. It is shown that nonsimultaneous blow-up may occur according to the value of p , q , r , and s ( p,q,r,s > 1). We also investigate blow-up rates of al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2016

ISSN: 0893-9659

DOI: 10.1016/j.aml.2016.03.012